############################################################### ############################################################### ############################################################### ### CCP4 6.4: ctruncate version 1.13.13 : 27/02/14## ############################################################### User: unknown Run date: 15/ 5/2014 Run time: 03:34:15 Please reference: Collaborative Computational Project, Number 4. 1994. "The CCP4 Suite: Programs for Protein Crystallography". Acta Cryst. D50, 760-763. as well as any specific reference in the program write-up.USER SUPPLIED INPUT: hklin /dls/i04-1/data/2014/nt5073-16/tmp/BAZ2BA/BAZ2BA-x828/BAZ2BA-x828_1_/xia2-3daii-run/1400120766/xBAZ2BAx8281/scale/nt5073v16_xBAZ2BAx8281_scaled.mtz hklout /dls/i04-1/data/2014/nt5073-16/tmp/BAZ2BA/BAZ2BA-x828/BAZ2BA-x828_1_/xia2-3daii-run/1400120766/xBAZ2BAx8281/scale/SAD_truncated.mtz colano /*/*/[I(+),SIGI(+),I(-),SIGI(-)] colin /*/*/[IMEAN,SIGIMEAN] CRYSTAL INFO: Crystal/dataset names: /xBAZ2BAx8281/SAD Ncentric = 1967 Number of centric bins = 60 Cell parameters: 83.0900 96.7900 57.9500 90.0000 90.0000 90.0000 Number of reflections: 18775 Minimum resolution = 42.665 A Maximum resolution = 1.900 A Environment variable SYMINFO not set ... guessing location of symmetry file. SYMINFO file set to /dls_sw/apps/ccp4/x86_64/6.4.0/8apr2014/ccp4-6.4.0/lib/data/syminfo.lib Spacegroup: C 2 2 21 (number 20) Pointgroup: PG222 $TABLE: Intensity Completeness: $GRAPHS: Completeness v resolution:N:1,2,3,4,5,6: $$ 1/resol^2 completeness sig1 sig2 sig3 standard$$ $$ 0.002309 0.8286 0.8286 0.8286 0.8286 0.0411 0.006927 1.0000 1.0000 1.0000 1.0000 0.0263 0.011544 0.9724 0.9724 0.9724 0.9724 0.0313 0.016162 1.0000 1.0000 1.0000 1.0000 0.0308 0.020780 1.0000 0.9890 0.9780 0.9780 0.0548 0.025397 1.0000 1.0000 1.0000 1.0000 0.0376 0.030015 1.0000 1.0000 1.0000 0.9856 0.0438 0.034633 1.0000 0.9901 0.9901 0.9604 0.1101 0.039250 0.9904 0.9904 0.9809 0.9809 0.0359 0.043868 0.9918 0.9551 0.9510 0.9510 0.5351 0.048486 0.9832 0.9748 0.9748 0.9580 0.0543 0.053103 0.9668 0.9585 0.9585 0.9585 0.0598 0.057721 1.0000 0.9924 0.9924 0.9924 0.0518 0.062339 1.0000 0.9922 0.9844 0.9767 0.1129 0.066956 0.9926 0.9777 0.9703 0.9628 0.0550 0.071574 1.0000 0.9794 0.9622 0.9622 0.0518 0.076192 0.9889 0.9705 0.9705 0.9705 0.0432 0.080809 0.9966 0.9866 0.9799 0.9732 0.0396 0.085427 1.0000 1.0000 0.9966 0.9866 0.0451 0.090045 1.0000 1.0000 1.0000 0.9808 0.0412 0.094662 1.0000 0.9899 0.9732 0.9497 0.0610 0.099280 0.9941 0.9765 0.9619 0.9501 0.0716 0.103898 1.0000 0.9803 0.9671 0.9572 0.2523 0.108515 1.0000 0.9883 0.9854 0.9650 0.1769 0.113133 0.9853 0.9500 0.9235 0.9088 0.2433 0.117751 1.0000 0.9815 0.9508 0.9354 0.0965 0.122368 1.0000 0.9673 0.9401 0.9210 0.1827 0.126986 1.0000 0.9911 0.9586 0.9408 0.0899 0.131604 0.9945 0.9671 0.9397 0.9205 0.1235 0.136221 1.0000 0.9749 0.9694 0.9582 0.0893 0.140839 1.0000 0.9718 0.9520 0.9209 0.1223 0.145457 1.0000 0.9630 0.9365 0.9101 0.1373 0.150074 1.0000 0.9450 0.9110 0.8586 0.1926 0.154692 0.9974 0.9617 0.9311 0.8878 0.2187 0.159310 1.0000 0.9492 0.9061 0.8426 0.2343 0.163928 0.9945 0.9365 0.8867 0.8425 0.2330 0.168545 0.9718 0.9176 0.8565 0.8212 0.2072 0.173163 1.0000 0.9181 0.8635 0.8337 0.4977 0.177781 1.0000 0.9271 0.8643 0.8291 0.3049 0.182398 1.0000 0.8990 0.8317 0.7596 0.7442 0.187016 0.9834 0.8955 0.8337 0.7791 0.4880 0.191634 1.0000 0.8649 0.8009 0.7038 0.3061 0.196251 0.9928 0.8878 0.8496 0.7900 0.2164 0.200869 1.0000 0.8330 0.7391 0.6636 0.3341 0.205487 1.0000 0.8481 0.7804 0.7079 0.5945 0.210104 1.0000 0.8590 0.7766 0.6811 0.4067 0.214722 0.9977 0.8974 0.7995 0.7226 0.3615 0.219340 1.0000 0.8432 0.7591 0.6705 0.4407 0.223957 0.9956 0.8455 0.7373 0.6468 0.4709 0.228575 0.9935 0.8186 0.6911 0.5875 0.5477 0.233193 1.0000 0.8087 0.6743 0.5604 0.4570 0.237810 0.9919 0.7980 0.6747 0.5576 0.5536 0.242428 1.0000 0.7829 0.6404 0.5219 1.1272 0.247046 1.0000 0.7394 0.5880 0.4655 0.8188 0.251663 1.0000 0.7211 0.5930 0.4628 1.0306 0.256281 1.0000 0.6701 0.5082 0.3914 1.3399 0.260899 0.9979 0.6688 0.4969 0.3774 1.2433 0.265516 1.0000 0.6096 0.4196 0.3215 0.7929 0.270134 1.0000 0.7422 0.5430 0.3984 0.8685 0.274752 0.9862 0.5503 0.3688 0.2485 1.0678 $$ COMPLETENESS ANALYSIS (using intensities): Using I/sigI > 3 with completeness above 0.85, the estimated useful Resolution Range of this data is 14.716A to 2.524A The high resolution cut-off will be used in gathering the statistics for the dataset, however the full dataset will be output TRANSLATIONAL NCS: No translational NCS detected (with resolution limited to 4.00 A) ANISOTROPY ANALYSIS (using intensities): Eigenvalues: 1.0798 0.6297 0.6129 Eigenvalue ratios: 1.0000 0.5831 0.5676 Resolution limit in weakest direction = 2.836 A Anisotropic U (orthogonal coords): | 1.0798 0.0000 0.0000 | | 0.0000 0.6297 0.0000 | | 0.0000 0.0000 0.6129 | Anisotropic U scaling (fractional coords): | 1.564e-04 9.277e-21 5.385e-20 | | 9.277e-21 6.721e-05 4.725e-20 | | 5.385e-20 4.725e-20 1.825e-04 | Anisotropic B scaling (fractional coords): | 1.235e-02 7.325e-19 4.252e-18 | | 7.325e-19 5.307e-03 3.730e-18 | | 4.252e-18 3.730e-18 1.441e-02 | $TABLE: Intensity statistics: $GRAPHS: Mn(I) v resolution:N:1,2,3,4,5: : Mn(I/sd) v resolution:N:1,6,7,8,9: : No. reflections v resolution:N:1,10,11,12,13: $$ 1/resol^2 Mn(I(d1)) Mn(I(d2)) Mn(I(d3)) Mn(I(ov) Mn(I/sd(d1)) Mn(I/sd(d2)) Mn(I/sd(d3)) Mn(I/sd(ov)) N(d1) N(d2) N(d3) N(ov)$$ $$ 0.002309 1.7983e+03 1.1679e+03 8.8871e+02 1.3566e+03 5.6201e+01 4.5104e+01 5.3921e+01 5.5636e+01 72 64 40 408 0.006927 1.4707e+03 1.0442e+03 1.3016e+03 1.2895e+03 6.1922e+01 5.6514e+01 5.9836e+01 6.1852e+01 96 120 112 704 0.011544 8.0358e+02 6.7682e+02 1.3692e+03 9.2107e+02 5.5477e+01 5.3629e+01 6.2357e+01 5.9789e+01 128 128 120 848 0.016162 2.6131e+02 6.6909e+02 7.8349e+02 6.0955e+02 4.7045e+01 5.2392e+01 4.7988e+01 5.4477e+01 160 160 112 984 0.020780 2.8483e+02 2.6369e+02 6.2699e+02 4.0778e+02 4.5229e+01 4.6013e+01 5.3508e+01 5.2285e+01 192 168 168 1144 0.025397 1.2682e+02 2.8338e+02 3.1463e+02 3.5927e+02 3.4720e+01 4.3503e+01 4.3229e+01 4.8835e+01 176 168 152 1200 0.030015 2.8709e+02 3.5438e+02 5.8269e+02 4.2919e+02 4.4194e+01 4.4736e+01 5.1567e+01 4.9418e+01 176 192 216 1336 0.034633 2.5892e+02 3.2910e+02 3.9490e+02 3.7490e+02 4.9084e+01 4.5929e+01 4.7894e+01 4.9904e+01 192 192 152 1352 0.039250 2.4413e+02 4.5527e+02 5.7843e+02 4.8672e+02 4.8256e+01 4.9595e+01 5.2279e+01 5.0765e+01 224 200 208 1408 0.043868 2.6330e+02 7.6643e+02 4.2769e+02 5.4031e+02 4.7555e+01 4.3673e+01 3.5161e+01 4.3615e+01 208 248 232 1632 0.048486 4.7149e+02 1.0798e+03 5.0223e+02 6.4208e+02 5.0503e+01 4.8344e+01 4.4242e+01 4.8663e+01 256 232 160 1592 0.053103 3.1899e+02 6.3841e+02 8.1575e+02 5.2990e+02 4.2728e+01 4.6600e+01 4.8800e+01 4.6563e+01 264 216 256 1656 0.057721 3.2108e+02 6.6578e+02 4.9177e+02 5.5634e+02 4.1935e+01 4.5519e+01 4.6934e+01 4.8826e+01 232 232 232 1784 0.062339 3.9556e+02 5.2778e+02 5.4261e+02 4.8520e+02 4.2840e+01 4.3642e+01 4.6794e+01 4.7253e+01 240 256 240 1760 0.066956 3.8243e+02 6.8585e+02 6.7245e+02 5.3528e+02 4.4006e+01 5.1153e+01 5.3213e+01 4.8335e+01 288 296 264 1912 0.071574 3.9930e+02 7.0026e+02 6.2798e+02 5.2334e+02 4.7346e+01 4.6547e+01 4.7740e+01 4.6843e+01 272 248 256 1984 0.076192 3.3097e+02 4.5686e+02 6.2464e+02 4.6157e+02 4.3699e+01 4.8275e+01 4.6028e+01 4.6867e+01 280 304 280 1904 0.080809 2.4757e+02 4.5250e+02 6.0823e+02 3.8951e+02 3.6444e+01 4.5185e+01 5.2893e+01 4.4271e+01 272 288 264 2112 0.085427 2.2217e+02 5.3299e+02 4.6719e+02 3.4295e+02 3.8743e+01 4.6285e+01 4.3888e+01 4.2059e+01 312 312 280 2080 0.090045 1.5350e+02 4.5293e+02 3.0386e+02 2.7687e+02 3.3702e+01 4.5831e+01 4.2128e+01 4.1026e+01 320 296 320 2232 0.094662 1.4875e+02 3.4532e+02 2.2377e+02 2.1912e+02 3.6677e+01 4.1510e+01 4.0344e+01 3.8383e+01 288 304 256 2112 0.099280 8.6288e+01 2.4543e+02 2.6586e+02 1.9584e+02 2.5364e+01 3.7592e+01 4.2983e+01 3.5717e+01 336 312 384 2384 0.103898 9.7824e+01 1.5407e+02 1.4788e+02 1.4793e+02 2.7838e+01 3.2006e+01 3.4891e+01 3.3312e+01 312 336 256 2200 0.108515 6.0890e+01 1.9701e+02 2.2218e+02 1.4290e+02 2.0996e+01 3.3361e+01 3.9878e+01 3.1047e+01 352 328 344 2432 0.113133 3.9950e+01 1.5120e+02 1.6688e+02 1.3504e+02 1.6650e+01 2.8929e+01 3.4619e+01 2.9977e+01 304 320 352 2416 0.117751 6.0467e+01 1.1218e+02 1.9413e+02 1.0745e+02 2.1901e+01 2.5472e+01 3.5693e+01 2.7315e+01 360 344 280 2336 0.122368 5.2403e+01 9.6960e+01 1.3946e+02 9.7566e+01 2.0520e+01 2.3574e+01 3.4164e+01 2.6512e+01 320 352 392 2624 0.126986 4.5955e+01 1.3746e+02 1.2220e+02 8.8654e+01 1.9565e+01 2.8492e+01 3.1637e+01 2.5444e+01 360 392 376 2488 0.131604 4.7372e+01 1.1653e+02 7.7501e+01 8.4732e+01 1.9051e+01 2.5907e+01 2.5261e+01 2.4277e+01 352 328 304 2600 0.136221 4.4202e+01 1.2230e+02 9.3212e+01 8.0394e+01 1.8228e+01 2.6899e+01 2.9264e+01 2.4221e+01 384 360 376 2616 0.140839 3.1818e+01 8.0608e+01 6.9704e+01 5.7844e+01 1.4112e+01 2.2663e+01 2.4668e+01 1.9896e+01 368 400 336 2560 0.145457 2.7942e+01 6.8542e+01 6.0068e+01 5.3994e+01 1.3881e+01 1.8754e+01 2.2376e+01 1.8809e+01 328 360 392 2736 0.150074 2.3078e+01 6.0359e+01 8.3449e+01 5.1335e+01 1.1235e+01 1.7670e+01 2.5934e+01 1.8423e+01 432 352 384 2792 0.154692 1.7833e+01 5.3167e+01 4.9989e+01 4.2609e+01 1.0569e+01 1.5465e+01 1.7323e+01 1.4927e+01 376 432 384 2832 0.159310 1.6897e+01 5.5903e+01 6.0012e+01 4.1689e+01 9.3307e+00 1.4837e+01 1.8130e+01 1.3784e+01 432 352 400 2872 0.163928 1.6207e+01 6.1337e+01 6.4808e+01 3.9821e+01 8.9150e+00 1.5113e+01 1.8900e+01 1.3278e+01 352 416 336 2672 0.168545 1.4072e+01 5.8648e+01 6.3024e+01 3.7057e+01 8.2575e+00 1.5907e+01 1.9772e+01 1.3202e+01 432 408 392 3000 0.173163 1.4567e+01 5.1278e+01 5.9889e+01 3.5559e+01 8.3084e+00 1.5155e+01 1.9734e+01 1.3184e+01 408 448 480 2928 0.177781 1.1848e+01 5.0223e+01 4.6794e+01 3.0389e+01 7.0388e+00 1.5337e+01 1.6161e+01 1.1712e+01 400 392 368 2936 0.182398 1.0593e+01 3.6597e+01 3.4505e+01 2.4266e+01 6.2813e+00 1.1909e+01 1.4589e+01 1.0292e+01 432 448 368 3080 0.187016 7.4913e+00 4.5143e+01 4.6042e+01 2.9027e+01 4.6584e+00 1.3112e+01 1.7575e+01 1.1335e+01 408 376 472 3040 0.191634 7.7314e+00 4.5126e+01 4.7704e+01 2.6474e+01 4.6018e+00 1.2508e+01 1.6924e+01 1.0032e+01 456 480 432 3080 0.196251 1.0636e+01 3.7818e+01 4.5401e+01 2.6799e+01 5.2985e+00 1.1057e+01 1.6197e+01 1.0037e+01 392 360 344 3088 0.200869 6.8804e+00 2.8408e+01 4.2559e+01 2.1083e+01 3.8828e+00 8.3268e+00 1.5365e+01 8.1874e+00 448 456 472 3216 0.205487 5.9893e+00 2.9023e+01 4.2461e+01 2.2240e+01 3.5287e+00 9.8487e+00 1.5323e+01 8.9225e+00 408 448 496 3136 0.210104 5.8558e+00 2.8419e+01 4.2995e+01 1.9859e+01 3.6540e+00 8.4856e+00 1.5897e+01 8.1003e+00 480 488 408 3384 0.214722 7.1258e+00 2.3481e+01 3.4128e+01 1.8929e+01 4.1506e+00 8.5384e+00 1.4463e+01 8.2682e+00 416 456 368 3152 0.219340 4.7238e+00 2.2687e+01 3.3315e+01 1.6566e+01 3.0619e+00 7.4390e+00 1.3305e+01 7.2413e+00 496 424 496 3280 0.223957 4.6132e+00 2.3120e+01 3.5773e+01 1.5692e+01 2.8684e+00 7.9737e+00 1.4354e+01 6.9558e+00 448 432 488 3344 0.228575 2.7026e+00 2.0603e+01 2.7708e+01 1.2871e+01 1.8052e+00 7.4349e+00 1.2636e+01 6.0967e+00 424 488 416 3408 0.233193 3.5036e+00 1.4861e+01 3.1692e+01 1.2770e+01 2.0714e+00 5.4544e+00 1.2383e+01 5.7957e+00 512 464 448 3232 0.237810 2.6273e+00 1.4038e+01 2.3747e+01 1.0936e+01 1.7281e+00 5.6909e+00 1.0976e+01 5.3999e+00 448 488 504 3648 0.242428 2.8556e+00 1.2731e+01 1.8892e+01 9.1971e+00 1.8829e+00 5.6022e+00 9.1469e+00 4.7807e+00 432 440 504 3384 0.247046 1.8911e+00 1.0492e+01 1.8285e+01 8.5067e+00 1.2611e+00 4.8127e+00 8.3207e+00 4.3066e+00 528 520 416 3336 0.251663 1.7211e+00 8.1713e+00 1.7552e+01 7.7904e+00 1.1416e+00 4.1201e+00 8.4650e+00 4.1350e+00 464 488 464 3616 0.256281 1.2065e+00 7.1123e+00 1.5977e+01 6.2549e+00 8.1276e-01 3.7113e+00 8.1027e+00 3.3822e+00 456 504 472 3560 0.260899 1.4230e+00 7.0339e+00 1.1747e+01 5.6669e+00 9.6486e-01 3.5708e+00 5.9705e+00 3.0916e+00 552 488 496 3584 0.265516 7.7262e-01 5.0051e+00 1.0615e+01 5.0801e+00 4.1505e-01 2.6492e+00 5.7175e+00 2.7625e+00 440 480 496 3576 0.270134 2.5423e+00 7.1535e+00 1.1388e+01 6.0496e+00 1.5484e+00 3.4745e+00 5.5691e+00 3.1496e+00 512 536 552 3744 0.274752 4.5758e-01 3.9101e+00 8.1313e+00 3.5431e+00 2.7707e-01 2.0895e+00 4.3270e+00 1.9628e+00 528 488 472 3744 $$ TWINNING ANALYSIS: Data has been truncated at 2.52 A resolution Anisotropy correction has been applied before calculating twinning tests L test for twinning: (Padilla and Yeates Acta Cryst. D59 1124 (2003)) L statistic = 0.490 (untwinned 0.5 perfect twin 0.375) Data has used to 2.52 A resolution $TABLE: L test for twinning: $GRAPHS: cumulative distribution function for |L|:0|1x0|1:1,2,3,4: $$ |L| Observed Expected_untwinned Expected_twinned $$ $$ 0.000000 0.000000 0.000000 0.000000 0.050000 0.056799 0.050000 0.074938 0.100000 0.107260 0.100000 0.149500 0.150000 0.157406 0.150000 0.223312 0.200000 0.208094 0.200000 0.296000 0.250000 0.258085 0.250000 0.367188 0.300000 0.307762 0.300000 0.436500 0.350000 0.360203 0.350000 0.503562 0.400000 0.409392 0.400000 0.568000 0.450000 0.460917 0.450000 0.629437 0.500000 0.512265 0.500000 0.687500 0.550000 0.563523 0.550000 0.741812 0.600000 0.614572 0.600000 0.792000 0.650000 0.663928 0.650000 0.837688 0.700000 0.712939 0.700000 0.878500 0.750000 0.761706 0.750000 0.914062 0.800000 0.810265 0.800000 0.944000 0.850000 0.859228 0.850000 0.967937 0.900000 0.907817 0.900000 0.985500 0.950000 0.955620 0.950000 0.996313 1.000000 1.000000 1.000000 1.000000 $$ $TABLE: Acentric moments of I: $GRAPHS: 2nd moment of I 2.020 (Expected value = 2, Perfect Twin = 1.5):0|0.277x0|5:1,2: : 3rd & 4th moments of I (Expected values = 6, 24, Perfect twin = 3, 7.5):0|0.277x0|2:1,3,4: $$ 1/resol^2 $$ $$ 0.004618 1.771346 4.434868 13.960709 0.013853 1.922791 5.230269 17.731426 0.023088 2.090817 6.639906 28.142697 0.032323 1.849587 4.706049 14.210078 0.041559 1.975289 5.843347 22.763861 0.050794 2.141830 6.794906 26.851565 0.060029 1.967456 5.518220 18.734536 0.069264 1.796329 4.771238 17.227452 0.078500 2.098245 6.828676 29.543431 0.087735 1.947419 5.468731 19.168054 0.096970 1.957181 5.513217 19.394741 0.106205 2.039216 6.134216 23.741581 0.115441 2.000893 5.871477 21.822148 0.124676 2.128323 7.225837 33.718105 0.133911 1.971307 5.544571 18.898213 0.143146 2.210102 7.690329 35.659604 0.152382 2.256603 8.190277 40.216137 0.161617 2.158120 7.734895 37.954861 0.170852 2.243217 7.305323 29.354152 0.180087 2.038386 6.021506 22.802459 0.189323 2.250491 7.810923 35.921607 0.198558 2.650135 11.598271 67.580359 0.207793 2.539098 10.690497 58.669078 0.217028 2.621528 11.843443 75.166012 0.226264 2.621196 11.424483 66.265731 0.235499 2.291640 7.790717 33.173439 0.244734 2.676249 11.331921 62.887752 0.253970 2.705480 10.505375 49.967094 0.263205 2.645889 10.881473 60.094481 0.272440 3.166826 14.192570 85.218746 $$ $TABLE: Centric moments of I: $GRAPHS: 2nd moment of I 0.701 (Expected = 3, Perfect Twin = 2):0|0.277x0|5:1,2: : 3rd & 4th moments of I (Expected = 15, 105, Perfect Twin = 6, 24):0|0.277x0|4:1,3,4: $$ 1/resol^2 $$ $$ 0.004618 0.613144 1.127731 2.367067 0.013853 0.610496 0.932332 1.602063 0.023088 0.955115 2.347968 6.709654 0.032323 0.672867 1.484385 4.164574 0.041559 0.564063 0.846246 1.476522 0.050794 0.564554 0.945622 1.903368 0.060029 0.700560 1.280129 2.710848 0.069264 0.661446 1.213229 2.695632 0.078500 0.601651 1.189851 3.010706 0.087735 0.535805 0.917907 1.938058 0.096970 0.583010 1.127073 2.675118 0.106205 1.192872 4.089412 17.808567 0.115441 0.713292 1.609994 4.393557 0.124676 0.744335 1.590257 3.982052 0.133911 0.600320 1.053452 2.242017 0.143146 0.762945 2.064515 6.749372 0.152382 0.911676 2.801344 10.575569 0.161617 0.661499 1.130065 2.229146 0.170852 0.683634 1.435746 3.639319 0.180087 0.817233 1.833481 4.866019 0.189323 0.883095 2.663821 9.627023 0.198558 0.818623 1.770614 4.497501 0.207793 0.646279 1.245907 2.754778 0.217028 0.911523 2.093682 5.769964 0.226264 1.377394 4.592209 16.893109 0.235499 0.677051 1.422546 3.415960 0.244734 1.024780 3.019833 11.499305 0.253970 0.853474 1.875661 4.673011 0.263205 0.953371 2.545447 8.588764 0.272440 1.276775 4.156321 16.552276 $$ Mean acentric moments I from input data: /^2 = 2.020 (Expected = 2.000, Perfect Twin = 1.500) /^3 = 6.106 (Expected value = 6.000, Perfect Twin = 3.000) /^4 = 24.054 (Expected value = 24.000, Perfect Twin = 7.500) Mean acentric moments I from anisotropically corrected data: /^2 = 1.917 (Expected = 2.000, Perfect Twin = 1.500) /^3 = 5.350 (Expected value = 6.000, Perfect Twin = 3.000) /^4 = 19.344 (Expected value = 24.000, Perfect Twin = 7.500) Twin fraction estimates excluding operators Twin fraction estimate from L-test: 0.039 Twin fraction estimate from moments: 0.044 Twin fraction estimates by operator No operators found TWINNING SUMMARY Twinning fraction from H-test: 0.00 L-statistic from L-Test: 0.49 Relation between L statistics and twinning fraction: Twinning fraction = 0.000 L statistics = 0.500: Twinning fraction = 0.100 L statistics = 0.440: Twinning fraction = 0.500 L statistics = 0.375: NO Twinning detected Analysis of mean intensity by parity for reflection classes For each class, Mn(I/sig(I)) is given for even and odd parity with respect to the condition, eg group 1: h even & odd; group 7 h+k+l even & odd; group 8 h+k=2n & h+l=2n & k+l=2n or not Range Min_S Dmax Nref 1 2 3 4 5 6 7 8 h k l h+k h+l k+l h+k+l h+k,h+l,k+l 1 0.00131 27.65 39 43.6 55.2 43.6 55.2 44.1 53.9 48.3 0.0 45.1 51.7 45.1 51.7 44.1 53.9 45.1 51.7 2 0.00393 15.96 46 47.2 65.4 47.2 65.4 50.5 61.8 55.1 0.0 53.9 56.3 53.9 56.3 50.5 61.8 53.9 56.3 3 0.00654 12.36 52 52.7 66.1 52.7 66.1 55.7 62.9 59.1 0.0 61.4 56.5 61.4 56.5 55.7 62.9 61.4 56.5 4 0.00916 10.45 57 51.6 66.2 51.6 66.2 55.8 59.3 57.5 0.0 54.5 60.5 54.5 60.5 55.8 59.3 54.5 60.5 5 0.01178 9.22 62 51.7 59.1 51.7 59.1 55.0 55.5 55.2 0.0 54.2 56.1 54.2 56.1 55.0 55.5 54.2 56.1 6 0.01439 8.34 73 49.2 56.7 49.2 56.7 49.1 55.7 52.5 0.0 52.0 53.0 52.0 53.0 49.1 55.7 52.0 53.0 7 0.01701 7.67 69 53.2 50.9 53.2 50.9 49.7 54.7 52.0 0.0 50.9 52.9 50.9 52.9 49.7 54.7 50.9 52.9 8 0.01963 7.14 86 44.5 52.1 44.5 52.1 47.0 48.9 47.8 0.0 46.2 50.1 46.2 50.1 47.0 48.9 46.2 50.1 9 0.02224 6.71 76 47.8 44.7 47.8 44.7 46.4 46.3 46.3 0.0 44.6 47.8 44.6 47.8 46.4 46.3 44.6 47.8 10 0.02486 6.34 92 48.4 47.1 48.4 47.1 45.9 49.7 47.7 0.0 48.6 46.8 48.6 46.8 45.9 49.7 48.6 46.8 11 0.02748 6.03 89 41.5 50.8 41.5 50.8 46.8 44.3 45.6 0.0 44.7 46.4 44.7 46.4 46.8 44.3 44.7 46.4 12 0.03009 5.76 102 44.9 51.9 44.9 51.9 45.5 51.6 48.1 0.0 43.9 52.3 43.9 52.3 45.5 51.6 43.9 52.3 13 0.03271 5.53 88 45.3 50.7 45.3 50.7 46.8 49.3 48.0 0.0 48.5 47.4 48.5 47.4 46.8 49.3 48.5 47.4 14 0.03533 5.32 109 45.0 52.7 45.0 52.7 48.4 48.7 48.5 0.0 49.1 48.1 49.1 48.1 48.4 48.7 49.1 48.1 15 0.03794 5.13 105 45.1 53.9 45.1 53.9 45.1 53.1 49.1 0.0 47.6 50.8 47.6 50.8 45.1 53.1 47.6 50.8 16 0.04056 4.97 102 41.7 46.4 41.7 46.4 40.5 48.1 44.1 0.0 45.2 43.0 45.2 43.0 40.5 48.1 45.2 43.0 17 0.04318 4.81 116 41.8 41.1 41.8 41.1 41.2 41.8 41.5 0.0 41.7 41.3 41.7 41.3 41.2 41.8 41.7 41.3 18 0.04579 4.67 102 41.9 47.7 41.9 47.7 43.7 46.2 44.7 0.0 42.2 47.3 42.2 47.3 43.7 46.2 42.2 47.3 19 0.04841 4.55 119 48.7 49.7 48.7 49.7 48.5 49.9 49.2 0.0 48.3 50.2 48.3 50.2 48.5 49.9 48.3 50.2 20 0.05103 4.43 115 49.0 43.7 49.0 43.7 47.5 45.4 46.5 0.0 48.3 44.9 48.3 44.9 47.5 45.4 48.3 44.9 21 0.05364 4.32 121 42.4 50.1 42.4 50.1 45.2 47.1 46.1 0.0 47.7 44.6 47.7 44.6 45.2 47.1 47.7 44.6 22 0.05626 4.22 127 43.2 50.1 43.2 50.1 45.8 46.7 46.2 0.0 46.7 45.7 46.7 45.7 45.8 46.7 46.7 45.7 23 0.05888 4.12 130 46.1 49.9 46.1 49.9 47.9 48.3 48.1 0.0 50.2 46.3 50.2 46.3 47.9 48.3 50.2 46.3 24 0.06149 4.03 127 43.0 46.4 43.0 46.4 41.0 48.2 44.5 0.0 41.3 48.4 41.3 48.4 41.0 48.2 41.3 48.4 25 0.06411 3.95 130 47.1 48.0 47.1 48.0 47.7 47.3 47.5 0.0 45.8 49.1 45.8 49.1 47.7 47.3 45.8 49.1 26 0.06673 3.87 134 45.1 49.0 45.1 49.0 44.7 49.8 47.0 0.0 46.8 47.2 46.8 47.2 44.7 49.8 46.8 47.2 27 0.06934 3.80 139 44.7 49.9 44.7 49.9 44.9 49.7 47.3 0.0 48.1 46.6 48.1 46.6 44.9 49.7 48.1 46.6 28 0.07196 3.73 145 43.8 44.9 43.8 44.9 41.2 47.5 44.3 0.0 40.0 48.8 40.0 48.8 41.2 47.5 40.0 48.8 29 0.07458 3.66 126 45.0 47.3 45.0 47.3 45.5 46.8 46.2 0.0 45.8 46.5 45.8 46.5 45.5 46.8 45.8 46.5 30 0.07719 3.60 149 42.4 44.9 42.4 44.9 41.0 46.6 43.7 0.0 44.2 43.0 44.2 43.0 41.0 46.6 44.2 43.0 31 0.07981 3.54 145 40.7 45.7 40.7 45.7 41.9 44.4 43.1 0.0 45.9 40.0 45.9 40.0 41.9 44.4 45.9 40.0 32 0.08243 3.48 146 40.5 41.8 40.5 41.8 39.3 43.4 41.2 0.0 40.2 42.0 40.2 42.0 39.3 43.4 40.2 42.0 33 0.08504 3.43 151 41.9 41.6 41.9 41.6 41.1 42.4 41.8 0.0 42.9 40.7 42.9 40.7 41.1 42.4 42.9 40.7 34 0.08766 3.38 157 39.5 39.6 39.5 39.6 39.8 39.3 39.5 0.0 40.0 39.2 40.0 39.2 39.8 39.3 40.0 39.2 35 0.09028 3.33 156 41.0 40.6 41.0 40.6 39.6 42.1 40.8 0.0 43.0 38.1 43.0 38.1 39.6 42.1 43.0 38.1 36 0.09289 3.28 147 38.1 36.1 38.1 36.1 35.2 39.2 37.2 0.0 37.5 36.9 37.5 36.9 35.2 39.2 37.5 36.9 37 0.09551 3.24 157 37.9 36.7 37.9 36.7 36.6 38.0 37.3 0.0 36.4 38.1 36.4 38.1 36.6 38.0 36.4 38.1 38 0.09813 3.19 169 34.8 33.6 34.8 33.6 33.9 34.6 34.2 0.0 35.2 33.3 35.2 33.3 33.9 34.6 35.2 33.3 39 0.10074 3.15 164 34.6 32.0 34.6 32.0 33.0 33.9 33.4 0.0 35.9 30.6 35.9 30.6 33.0 33.9 35.9 30.6 40 0.10336 3.11 153 31.3 33.2 31.3 33.2 31.1 33.3 32.2 0.0 33.6 30.5 33.6 30.5 31.1 33.3 33.6 30.5 41 0.10598 3.07 161 30.0 32.0 30.0 32.0 30.1 31.9 31.0 0.0 32.4 29.9 32.4 29.9 30.1 31.9 32.4 29.9 42 0.10859 3.03 180 31.0 29.0 31.0 29.0 29.8 30.2 30.0 0.0 30.7 29.3 30.7 29.3 29.8 30.2 30.7 29.3 43 0.11121 3.00 170 26.9 31.9 26.9 31.9 32.3 26.3 29.2 0.0 31.9 26.6 31.9 26.6 32.3 26.3 31.9 26.6 44 0.11383 2.96 177 29.6 29.7 29.6 29.7 28.8 30.5 29.6 0.0 29.0 30.3 29.0 30.3 28.8 30.5 29.0 30.3 45 0.11644 2.93 156 23.1 29.4 23.1 29.4 24.4 27.8 26.1 0.0 24.5 27.9 24.5 27.9 24.4 27.8 24.5 27.9 46 0.11906 2.90 185 25.2 28.5 25.2 28.5 25.9 27.9 26.8 0.0 27.8 25.8 27.8 25.8 25.9 27.9 27.8 25.8 47 0.12168 2.87 186 25.9 24.6 25.9 24.6 25.5 25.0 25.3 0.0 26.5 24.0 26.5 24.0 25.5 25.0 26.5 24.0 48 0.12429 2.84 173 26.2 26.2 26.2 26.2 26.8 25.6 26.2 0.0 24.8 27.6 24.8 27.6 26.8 25.6 24.8 27.6 49 0.12691 2.81 181 23.3 24.9 23.3 24.9 26.6 21.1 24.0 0.0 24.1 24.0 24.1 24.0 26.6 21.1 24.1 24.0 50 0.12953 2.78 180 24.2 23.8 24.2 23.8 24.4 23.5 24.0 0.0 22.2 26.2 22.2 26.2 24.4 23.5 22.2 26.2 51 0.13214 2.75 201 22.5 24.4 22.5 24.4 21.2 25.5 23.5 0.0 25.2 21.8 25.2 21.8 21.2 25.5 25.2 21.8 52 0.13476 2.72 159 24.2 24.1 24.2 24.1 23.5 24.8 24.2 0.0 24.8 23.6 24.8 23.6 23.5 24.8 24.8 23.6 53 0.13738 2.70 200 21.9 22.1 21.9 22.1 23.9 20.0 22.0 0.0 23.9 20.3 23.9 20.3 23.9 20.0 23.9 20.3 54 0.13999 2.67 184 20.7 17.9 20.7 17.9 18.1 20.8 19.4 0.0 19.1 19.7 19.1 19.7 18.1 20.8 19.1 19.7 55 0.14261 2.65 205 19.0 18.6 19.0 18.6 17.6 20.0 18.8 0.0 18.6 19.0 18.6 19.0 17.6 20.0 18.6 19.0 56 0.14523 2.62 178 16.8 19.1 16.8 19.1 17.8 18.1 18.0 0.0 17.6 18.3 17.6 18.3 17.8 18.1 17.6 18.3 57 0.14784 2.60 212 18.8 18.7 18.8 18.7 18.4 19.1 18.7 0.0 20.6 17.0 20.6 17.0 18.4 19.1 20.6 17.0 58 0.15046 2.58 184 15.7 16.7 15.7 16.7 17.2 15.2 16.2 0.0 15.7 16.6 15.7 16.6 17.2 15.2 15.7 16.6 59 0.15308 2.56 188 15.1 14.5 15.1 14.5 15.4 14.1 14.8 0.0 15.7 13.9 15.7 13.9 15.4 14.1 15.7 13.9 60 0.15569 2.53 113 12.4 17.5 12.4 17.5 14.5 14.8 14.7 0.0 16.9 11.8 16.9 11.8 14.5 14.8 16.9 11.8 Totals: 8145 34.1 35.9 34.1 35.9 34.3 35.6 34.9 0.0 35.1 34.8 35.1 34.8 34.3 35.6 35.1 34.8 ICE RINGS: Possible Ice Rings Ice Ring Summary: reso mean_I mean_Sigma Estimated_I Zscore Completeness Ave_Completeness 3.89 531.78 8.99 510.35 2.38 1.00 1.00 3.67 479.77 8.47 436.46 5.12 0.99 1.00 3.44 347.38 6.43 340.74 1.03 1.00 1.00 2.67 62.80 2.37 64.36 -0.66 1.00 1.00 2.25 26.22 2.29 23.39 1.24 1.00 1.00 2.08 13.12 1.82 12.88 0.14 1.00 1.00 1.95 5.29 1.62 5.12 0.11 1.00 1.00 1.92 6.20 1.78 4.29 1.07 1.00 1.00 WILSON SCALING: Estimated number of residues = 169 Results Wilson plot: Computed using Popov & Bourenkov, Acta D (2003) D59, 1145 B = 29.862 intercept = 6.947 siga = 0.555 sigb = 0.064 scale factor on intensity = 1039.9990 $TABLE: Wilson plot: $GRAPHS: Wilson plot - estimated B factor = 29.9 :A:1,2,3: $$ 1/resol^2 ln(I/I_th) Best $$ $$ 0.00963 -7.02832 -7.02451 0.02172 -7.85304 -7.74427 0.03117 -7.80474 -7.77189 0.03945 -7.59059 -7.44349 0.04697 -7.32549 -7.23546 0.05404 -7.36077 -7.22780 0.06066 -7.42776 -7.32207 0.06694 -7.33352 -7.42569 0.07297 -7.32403 -7.53143 0.07883 -7.46372 -7.64686 0.08443 -7.67085 -7.76723 0.08987 -7.83464 -7.90749 0.09512 -8.03203 -8.05976 0.10023 -8.24857 -8.20163 0.10531 -8.36699 -8.32951 0.11020 -8.46939 -8.44796 0.11502 -8.53403 -8.56645 0.11987 -8.67050 -8.68452 0.12435 -8.80580 -8.78574 0.12903 -8.82435 -8.88622 0.13340 -8.83268 -8.97009 0.13786 -8.92980 -9.04319 0.14220 -9.17423 -9.10826 0.14645 -9.24029 -9.17018 0.15060 -9.30634 -9.23590 0.15496 -9.41674 -9.30772 0.15893 -9.40811 -9.36297 0.16301 -9.45945 -9.41113 0.16711 -9.45347 -9.46527 0.17107 -9.51263 -9.51125 0.17502 -9.56685 -9.55453 0.17889 -9.70598 -9.59582 0.18268 -9.90585 -9.63662 0.18659 -9.69598 -9.67981 0.19033 -9.65944 -9.71825 0.19412 -9.78306 -9.75748 0.19777 -9.75173 -9.79654 0.20141 -9.92748 -9.84691 0.20522 -9.85402 -9.89361 0.20869 -9.91293 -9.94355 0.21220 -9.97146 -9.99387 0.21589 -9.99216 -10.05162 0.21937 -10.14698 -10.10074 0.22286 -10.11341 -10.14155 0.22637 -10.26804 -10.18546 0.22971 -10.29488 -10.23818 0.23321 -10.34191 -10.30803 0.23669 -10.40087 -10.37421 0.23990 -10.53297 -10.43001 0.24326 -10.65376 -10.48742 0.24660 -10.68706 -10.54973 0.25007 -10.65977 -10.61801 0.25326 -10.84525 -10.68247 0.25641 -10.97480 -10.74777 0.25961 -11.04789 -10.81423 0.26293 -11.07129 -10.88219 0.26620 -11.12997 -10.95525 0.26930 -10.97421 -11.02517 0.27248 -10.99179 -11.09438 0.27553 -11.70614 -11.15766 $$ epsilon 8.000000 != weight 4.000000 INTENSITY TO AMPLITUDE CONVERSION: Calculation using Wilson prior 0 intensities have been rejected as unphysical $TABLE: Cumulative intensity distribution: $GRAPHS: Cumulative intensity distribution (Acentric and centric):N:1,2,3,4,5,6: $$ Z Acent_theor Acent_twin Acent_obser Cent_theor Cent_obser $$ $$ 0.00000 0.00000 0.00000 0.04392 0.00000 0.08913 0.04000 0.03921 0.00303 0.07135 0.15852 0.17320 0.08000 0.07688 0.01151 0.10308 0.22270 0.22834 0.12000 0.11308 0.02458 0.13680 0.27097 0.27469 0.16000 0.14786 0.04148 0.16987 0.31084 0.31001 0.20000 0.18127 0.06155 0.20360 0.34528 0.34143 0.24000 0.21337 0.08420 0.23282 0.37579 0.37965 0.28000 0.24422 0.10891 0.26370 0.40330 0.40734 0.32000 0.27385 0.13524 0.29437 0.42839 0.42731 0.36000 0.30232 0.16279 0.32373 0.45149 0.44709 0.40000 0.32968 0.19121 0.35066 0.47291 0.47370 0.44000 0.35596 0.22021 0.37919 0.49288 0.49838 0.48000 0.38122 0.24953 0.40593 0.51158 0.51631 0.52000 0.40548 0.27895 0.43243 0.52916 0.53742 0.56000 0.42879 0.30829 0.45755 0.54574 0.54851 0.60000 0.45119 0.33737 0.48152 0.56142 0.56655 0.64000 0.47271 0.36607 0.50483 0.57629 0.57827 0.68000 0.49338 0.39428 0.52529 0.59041 0.59174 0.72000 0.51325 0.42190 0.54553 0.60386 0.60340 0.76000 0.53233 0.44885 0.56412 0.61667 0.61651 0.80000 0.55067 0.47507 0.58166 0.62891 0.62587 0.84000 0.56829 0.50052 0.59961 0.64060 0.63850 0.88000 0.58522 0.52516 0.61735 0.65180 0.65072 0.92000 0.60148 0.54896 0.63379 0.66253 0.66282 0.96000 0.61711 0.57191 0.64951 0.67281 0.67549 1.00000 0.63212 0.59399 0.66355 0.68269 0.68589 1.04000 0.64655 0.61521 0.67875 0.69218 0.69485 1.08000 0.66040 0.63557 0.69172 0.70130 0.70307 1.12000 0.67372 0.65507 0.70496 0.71008 0.71234 1.16000 0.68651 0.67373 0.71778 0.71853 0.72274 1.20000 0.69881 0.69156 0.72952 0.72668 0.73060 1.24000 0.71062 0.70857 0.74195 0.73453 0.74037 1.28000 0.72196 0.72480 0.75347 0.74210 0.74698 1.32000 0.73286 0.74025 0.76378 0.74941 0.75135 1.36000 0.74334 0.75495 0.77389 0.75646 0.75810 1.40000 0.75340 0.76892 0.78330 0.76328 0.76108 1.44000 0.76307 0.78220 0.79429 0.76986 0.77107 1.48000 0.77236 0.79480 0.80308 0.77623 0.77867 1.52000 0.78129 0.80675 0.81203 0.78238 0.78227 1.56000 0.78986 0.81807 0.81849 0.78833 0.78451 1.60000 0.79810 0.82880 0.82545 0.79410 0.78931 1.64000 0.80602 0.83895 0.83452 0.79967 0.79759 1.68000 0.81363 0.84855 0.84098 0.80508 0.80205 1.72000 0.82093 0.85763 0.84850 0.81031 0.80690 1.76000 0.82796 0.86621 0.85608 0.81538 0.80945 1.80000 0.83470 0.87431 0.86211 0.82029 0.81256 1.84000 0.84118 0.88196 0.86890 0.82505 0.81796 1.88000 0.84741 0.88917 0.87453 0.82967 0.81986 1.92000 0.85339 0.89597 0.87918 0.83414 0.82250 1.96000 0.85914 0.90238 0.88428 0.83849 0.82635 2.00000 0.86466 0.90842 0.88984 0.84270 0.83049 $$ Estimated limits of anomalous signal Wang limit (deltaI/I) > 0.6% : 1.9 A anomalous limit (deltaI/sig) > 1.3 : -nan A measurability limit (Nanon/Nov) > 5% : -nan A These calculations are performed using scaled and merged data. More accurate estimates of the limit of the anomalous signal can be obtained using scaled and unmerged data in the half dataset correlation calculation of aimless. $TABLE: Intensity anomalous analysis: $GRAPHS: Mn(dI) v resolution:N:1,2: : Mn(dI/sigdI) v resolution:N:1,3: : Mn(dI/I) v resolution:N:1,4: : Mesurability v resolution:N:1,5: $$ 1/resol^2 Mn(dI) Mn(dI/sigdI)) Mn(dI/I) measurability$$ $$ 0.002309 1.5911e+01 2.7406e-01 1.2465e-02 1.7647e-02 0.006927 1.6611e+01 4.9185e-01 1.9097e-02 1.4815e-02 0.011544 1.2122e+01 4.3484e-01 1.6724e-02 6.4935e-03 0.016162 8.0492e+00 4.6964e-01 1.4653e-02 5.9880e-03 0.020780 5.9519e+00 4.9460e-01 1.8524e-02 1.0989e-02 0.025397 5.2858e+00 5.4647e-01 1.2420e-02 5.1546e-03 0.030015 8.7368e+00 6.1606e-01 2.2228e-02 5.1020e-03 0.034633 7.3033e+00 5.6061e-01 2.0075e-02 4.4248e-03 0.039250 1.5128e+01 9.1729e-01 2.7348e-02 8.9686e-03 0.043868 1.8131e+01 1.1743e+00 3.1761e-02 8.6580e-03 0.048486 2.7490e+01 1.1110e+00 4.3599e-02 4.0161e-03 0.053103 1.1417e+01 7.7932e-01 2.0471e-02 0.0000e+00 0.057721 1.1543e+01 6.2169e-01 2.1306e-02 3.7879e-03 0.062339 1.0747e+01 7.1023e-01 2.1994e-02 3.7594e-03 0.066956 1.5349e+01 1.0314e+00 2.7254e-02 7.2993e-03 0.071574 1.2466e+01 6.8541e-01 2.3639e-02 1.8248e-02 0.076192 9.8078e+00 7.4999e-01 2.1238e-02 6.7114e-03 0.080809 8.6172e+00 6.1373e-01 2.5902e-02 3.4130e-03 0.085427 8.0247e+00 6.4279e-01 2.5909e-02 1.3115e-02 0.090045 7.7833e+00 7.4917e-01 3.0303e-02 9.7403e-03 0.094662 5.2882e+00 6.2151e-01 2.4645e-02 3.1847e-03 0.099280 6.2061e+00 7.6669e-01 3.6384e-02 3.0581e-03 0.103898 4.5185e+00 6.0252e-01 2.9572e-02 3.3113e-03 0.108515 4.8352e+00 7.0579e-01 3.4735e-02 2.9412e-03 0.113133 4.2185e+00 6.6087e-01 3.3330e-02 2.8818e-03 0.117751 5.3080e+00 8.9643e-01 4.8501e-02 0.0000e+00 0.122368 3.5915e+00 6.3854e-01 3.8280e-02 0.0000e+00 0.126986 3.4560e+00 6.4096e-01 3.7756e-02 2.9070e-03 0.131604 3.8139e+00 7.2594e-01 4.5349e-02 0.0000e+00 0.136221 3.2759e+00 6.4857e-01 4.5307e-02 2.7473e-03 0.140839 3.3360e+00 7.2936e-01 6.1582e-02 2.6525e-03 0.145457 3.0656e+00 6.6791e-01 5.7427e-02 2.5840e-03 0.150074 2.7326e+00 6.0865e-01 6.2269e-02 0.0000e+00 0.154692 3.5070e+00 7.6066e-01 8.2668e-02 0.0000e+00 0.159310 3.6462e+00 7.3018e-01 8.0231e-02 5.3050e-03 0.163928 3.8595e+00 8.2993e-01 1.0226e-01 2.4814e-03 0.168545 3.1992e+00 7.3701e-01 8.9296e-02 2.4938e-03 0.173163 3.7514e+00 8.7871e-01 1.0808e-01 5.0125e-03 0.177781 2.9917e+00 7.1496e-01 1.1749e-01 2.3641e-03 0.182398 2.6862e+00 6.6882e-01 1.1340e-01 0.0000e+00 0.187016 2.8652e+00 6.4454e-01 1.0305e-01 0.0000e+00 0.191634 3.1663e+00 7.0640e-01 1.1812e-01 4.8077e-03 0.196251 3.9977e+00 8.5957e-01 1.6083e-01 2.3697e-03 0.200869 2.7450e+00 6.5467e-01 1.1768e-01 0.0000e+00 0.205487 2.7010e+00 6.6338e-01 1.1761e-01 4.2827e-03 0.210104 2.9410e+00 7.3804e-01 1.5047e-01 0.0000e+00 0.214722 2.7380e+00 6.9233e-01 1.4525e-01 2.2321e-03 0.219340 2.7958e+00 7.0452e-01 1.6154e-01 0.0000e+00 0.223957 2.8944e+00 7.4766e-01 1.9882e-01 0.0000e+00 0.228575 2.5205e+00 6.6901e-01 1.9258e-01 0.0000e+00 0.233193 2.8113e+00 7.6713e-01 1.8251e-01 0.0000e+00 0.237810 2.4695e+00 6.9131e-01 2.4647e-01 0.0000e+00 0.242428 2.4113e+00 6.9009e-01 2.7611e-01 2.0921e-03 0.247046 2.5130e+00 7.2394e-01 3.0560e-01 0.0000e+00 0.251663 2.3361e+00 6.7907e-01 3.5311e-01 0.0000e+00 0.256281 2.4948e+00 7.4016e-01 4.3023e-01 0.0000e+00 0.260899 2.4909e+00 7.4242e-01 4.2365e-01 0.0000e+00 0.265516 2.3660e+00 6.5994e-01 4.7775e-01 0.0000e+00 0.270134 2.5008e+00 6.8706e-01 4.2367e-01 1.9881e-03 0.274752 2.4275e+00 7.3699e-01 1.0374e+00 0.0000e+00 $$ Estimated Optical Resolution: 1.7 $TABLE: Phil plot: $GRAPHS: Phil plot - normalised values:A:1,2,3,4: : Phil plot - vs sigma:A:1,5,6,7: $$ Value Io/Sigma I/Sigma F/Sigma**0.5 Io/sigIo I/sigI F/sigF$$ $$ -5.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.92500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.85000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.77500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.70000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.62500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.55000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.47500 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.40000 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.32500 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.25000 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.17500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.10000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -4.02500 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.95000 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.87500 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.80000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.72500 0.50000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.65000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.57500 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 -3.50000 1.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -3.42500 0.50000 0.00000 0.00000 0.50000 0.00000 0.00000 -3.35000 3.00001 0.00000 0.00000 0.00000 0.00000 0.00000 -3.27500 4.50000 0.00000 0.00000 1.00000 0.00000 0.00000 -3.20000 2.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -3.12500 1.50000 0.00000 0.00000 0.50000 0.00000 0.00000 -3.05000 2.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -2.97500 2.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -2.90000 1.00000 0.00000 0.00000 0.50000 0.00000 0.00000 -2.82500 0.50000 0.00000 0.00000 0.50000 0.00000 0.00000 -2.75000 1.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -2.67500 1.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -2.60000 0.50000 0.00000 0.00000 1.50000 0.00000 0.00000 -2.52500 1.00000 0.00000 0.00000 1.00000 0.00000 0.00000 -2.45000 2.50000 0.00000 0.00000 2.50000 0.00000 0.00000 -2.37500 2.50000 0.00000 0.00000 4.00000 0.00000 0.00000 -2.30000 2.50000 0.00000 0.00000 2.50000 0.00000 0.00000 -2.22500 3.00000 0.00000 0.00000 2.00000 0.00000 0.00000 -2.15000 2.00000 0.00000 0.00000 3.00000 0.00000 0.00000 -2.07500 2.00000 0.00000 0.00000 4.00000 0.00000 0.00000 -2.00000 5.50000 0.00000 0.00000 5.00000 0.00000 0.00000 -1.92500 5.50000 0.00000 0.00000 6.00000 0.00000 0.00000 -1.85000 2.50000 0.00000 0.00000 9.00000 0.00000 0.00000 -1.77500 3.50000 0.00000 0.00000 12.50000 0.00000 0.00000 -1.70000 6.50000 0.00000 0.00000 14.00000 0.00000 0.00000 -1.62500 7.00000 0.00000 0.00000 14.00000 0.00000 0.00000 -1.55000 7.50000 0.00000 0.00000 10.00000 0.00000 0.00000 -1.47500 8.00000 0.00000 0.00000 9.50000 0.00000 0.00000 -1.40000 6.50000 0.00000 0.00000 13.50000 0.00000 0.00000 -1.32500 6.00000 0.00000 0.00000 21.99999 0.00000 0.00000 -1.25000 7.50000 0.00000 0.00000 24.50000 0.00000 0.00000 -1.17500 10.00000 0.00000 0.00000 22.50000 0.00000 0.00000 -1.10000 8.50000 0.00000 0.00000 25.50000 0.00000 0.00000 -1.02500 7.00000 0.00000 0.00000 30.50000 0.00000 0.00000 -0.95000 10.50000 0.00000 0.00000 40.50000 0.00000 0.00000 -0.87500 12.50000 0.00000 0.00000 37.00000 0.00000 0.00000 -0.80000 15.50000 0.00000 0.00000 34.50000 0.00000 0.00000 -0.72500 21.00000 0.00000 0.00000 40.00000 0.00000 0.00000 -0.65000 22.00000 0.00000 0.00000 38.50000 0.00000 0.00000 -0.57500 26.50000 0.00000 0.00000 42.00000 0.00000 0.00000 -0.50000 27.50000 0.00000 0.00000 47.00000 0.00000 0.00000 -0.42500 32.00000 0.00000 0.00000 49.50000 0.00000 0.00000 -0.35000 45.50000 0.00000 0.00000 51.50000 0.00000 0.00000 -0.27500 67.00000 0.00000 0.00000 58.50000 0.00000 0.00000 -0.20000 99.50000 0.00000 0.00000 60.50000 0.00000 0.00000 -0.12500 133.50000 0.00000 0.00000 65.00000 0.00000 0.00000 -0.05000 263.00000 72.00000 0.00000 75.00000 0.00000 0.00000 0.02500 485.50000 387.00000 27.50000 69.50000 0.00000 0.00000 0.10000 604.50000 693.50000 111.00000 75.00000 0.00000 0.00000 0.17500 612.50000 728.00000 221.50000 79.00000 0.00000 0.00000 0.25000 595.50000 711.50000 365.00000 72.00000 0.00000 0.00000 0.32500 582.50000 717.00000 514.49998 78.50000 0.00000 0.00000 0.40000 559.50000 655.49999 631.50001 81.00000 0.00000 0.00000 0.47500 543.00000 622.50000 717.50000 87.00000 0.00000 0.00000 0.55000 525.99999 603.99999 793.50001 93.50000 0.00000 0.00000 0.62500 507.00000 576.50000 833.00000 85.50000 0.00000 0.00000 0.70000 497.00001 567.50001 856.99999 88.00000 6.00000 0.00000 0.77500 482.50000 529.00001 886.00000 91.00000 49.99998 0.00000 0.85000 481.50000 508.00000 922.50002 90.00000 87.00000 0.00000 0.92500 455.99999 510.00000 950.00000 88.00000 78.50000 0.00000 1.00000 440.50000 483.00000 928.00000 93.00000 67.50000 0.00000 1.07500 430.49998 451.00000 881.49995 95.49999 155.50012 0.00000 1.15000 423.00000 441.50001 826.50001 89.00000 303.99996 0.00000 1.22500 394.99998 394.99998 777.99998 90.00000 360.50000 0.00000 1.30000 352.50001 359.00000 750.00000 93.99999 351.00001 2.50000 1.37500 333.00000 347.50000 724.50000 92.00000 311.50000 39.00000 1.45000 319.50000 336.00000 685.49998 90.50001 263.99998 75.00000 1.52500 306.50001 322.00001 629.00003 95.50000 234.50001 68.50001 1.60000 301.50000 311.00000 561.49999 94.50000 215.00000 55.50000 1.67500 304.50000 306.50001 513.50003 92.50000 186.00003 38.00002 1.75000 299.50000 290.50000 478.50000 90.50000 167.50000 26.00000 1.82500 277.49997 274.49999 434.99996 89.50000 160.99999 22.99999 1.90000 260.50000 268.00000 374.50002 90.50000 139.00001 19.00000 1.97500 254.49999 256.99999 329.49999 92.00000 119.50000 67.50003 2.05000 238.50001 238.00001 301.00001 91.00000 115.00000 175.49992 2.12500 224.50000 225.00000 261.00000 89.00000 120.00000 240.50000 2.20000 216.50000 227.00001 221.99999 80.99999 114.99999 243.50000 2.27500 224.00002 233.50000 200.49997 69.49999 99.49998 242.50000 2.35000 214.00005 209.50006 182.50002 72.99998 89.00001 224.00005 2.42500 199.50000 197.99999 149.50003 79.50000 93.49999 189.00002 2.50000 199.00000 191.50000 110.50000 83.50000 94.00000 170.00000 2.57500 181.49998 167.99999 95.50000 83.49999 85.50000 159.99999 2.65000 171.00001 164.50001 86.99998 78.00000 88.00001 143.99997 2.72500 165.00002 167.00000 70.50003 77.00000 80.00003 132.00001 2.80000 173.49998 166.00000 63.00000 77.00000 68.50000 131.00000 2.87500 175.00000 156.50000 60.00000 77.50000 74.50000 114.50000 2.95000 152.49999 141.99999 43.49999 76.00000 83.00001 96.00000 3.02500 125.99995 121.49996 29.99999 71.49999 80.49998 90.99999 3.10000 112.99998 122.49996 25.00001 74.99998 78.49999 89.49999 3.17500 131.49999 142.49999 24.00000 85.00000 74.50001 87.50001 3.25000 137.00000 135.00000 20.00000 80.00000 70.00000 84.50000 3.32500 133.00000 124.50000 15.50000 75.50000 65.99999 78.49999 3.40000 119.99996 115.49997 14.50000 66.99997 62.50001 71.00000 3.47500 114.49998 106.50000 8.50001 60.49999 70.99999 61.00003 3.55000 111.50002 108.50000 7.50000 63.50000 67.50001 58.99999 3.62500 109.00000 102.50000 8.00000 66.00000 65.50000 64.00000 3.70000 102.49998 85.99999 7.00000 78.50001 65.99999 60.50000 3.77500 79.49998 78.00001 6.99999 72.99997 57.49999 61.50000 3.85000 86.49997 90.49997 4.50000 59.00000 57.49999 58.00001 3.92500 95.00001 89.00002 3.50000 61.00000 58.50000 56.99999 4.00000 80.50000 76.00000 3.00000 68.50000 57.50000 56.50000 4.07500 80.49995 75.00000 3.99999 64.00005 62.49998 47.50002 4.15000 84.99999 77.50001 2.99999 61.00002 62.99999 44.00000 4.22500 77.50001 78.50000 1.50000 58.50002 59.50000 44.00000 4.30000 72.99999 73.99998 2.00000 60.00005 60.50001 43.50000 4.37500 69.50000 66.00000 1.00000 68.50000 56.00000 47.50000 4.45000 63.50002 60.00001 0.99999 62.50002 53.99998 46.50002 4.52500 52.99998 52.99998 1.50000 54.49999 50.49998 44.00001 4.60000 55.99998 55.49998 0.50000 50.50000 53.49997 43.00001 4.67500 61.49998 59.49998 1.00001 52.50001 55.99996 39.50000 4.75000 54.50000 55.00000 1.50000 53.50000 52.50000 41.00000 4.82500 49.00001 53.50001 0.50000 52.00000 55.00001 45.99998 4.90000 48.00000 54.00001 0.00000 50.50000 51.50000 43.49999 4.97500 52.99999 52.50001 1.00000 53.49999 47.50001 36.00001 5.05000 53.99998 42.49997 0.99999 55.49999 49.50002 30.99998 5.12500 44.50000 37.50000 0.00000 50.50000 50.00000 31.50000 5.20000 40.49999 43.99997 0.00000 53.49997 50.99997 35.99999 5.27500 45.50001 42.99998 0.00000 47.49997 52.99999 32.99999 5.35000 48.50000 40.99999 0.50000 48.49997 55.49999 35.49998 5.42500 48.50000 42.99999 1.00000 61.00000 61.50000 43.00001 5.50000 41.00000 37.00000 0.50000 58.00000 54.50000 39.50000 5.57500 34.99999 38.99997 0.00000 53.50001 37.50005 34.50000 5.65000 40.00001 42.49999 0.50000 44.49998 35.00002 37.00001 5.72500 38.00002 32.00002 1.00000 38.99999 44.99999 39.50000 5.80000 30.49999 30.00003 0.50000 44.00002 49.50001 37.49999 5.87500 30.50000 28.50000 0.00000 53.50000 52.50000 35.00000 5.95000 25.00004 24.99998 0.00000 54.50003 53.50000 33.00001 6.02500 21.00001 26.99999 0.00000 46.49999 47.49999 31.00000 6.10000 29.49999 25.50000 0.00000 49.99998 43.99999 34.49999 6.17500 28.49997 25.50000 0.00000 48.99996 40.99997 35.99998 6.25000 21.50000 23.50000 0.00000 44.50000 36.00000 31.50000 6.32500 20.00001 23.49999 0.00000 43.50002 37.99999 27.00002 6.40000 24.50001 22.99999 0.00000 43.00001 42.50001 28.00001 6.47500 24.50001 18.50001 0.00000 41.00001 46.00000 32.00000 6.55000 20.50001 16.00000 0.00000 43.00004 46.50000 33.50001 6.62500 19.00000 16.50000 0.00000 43.00000 43.00000 36.00000 6.70000 17.99999 18.49999 0.00000 34.50001 44.49998 32.50002 6.77500 20.00000 19.50000 0.00000 44.50003 51.50001 27.00000 6.85000 17.50001 19.50000 0.00000 56.00000 46.50002 31.99998 6.92500 18.50002 17.99999 0.00000 47.99996 35.99998 36.49999 7.00000 20.50000 16.50000 0.00000 40.00000 38.00000 27.50000 7.07500 18.50000 17.99999 0.50000 41.99999 44.49999 27.49996 7.15000 19.50000 17.50000 0.50000 43.50000 46.50000 31.99999 7.22500 18.00001 13.50001 0.00000 39.50001 44.50001 25.50001 7.30000 12.49999 11.00000 0.00000 49.50007 47.50003 24.50001 7.37500 10.50000 11.50000 0.00000 51.00000 44.00000 30.00000 7.45000 11.50000 12.99999 0.00000 40.49999 35.50000 28.50002 7.52500 13.00000 10.99999 0.00000 42.50000 36.00000 28.00001 7.60000 11.00001 7.50000 0.00000 37.50001 36.50000 26.50001 7.67500 11.50002 10.00002 0.00000 34.00001 33.99998 23.50001 7.75000 11.50000 12.00000 0.00000 35.50000 30.00000 29.00000 7.82500 13.99997 13.49999 0.00000 34.50000 32.99998 32.00000 7.90000 15.49999 17.50000 0.00000 35.00000 40.00001 31.00000 7.97500 13.49999 15.00001 0.00000 37.99999 44.50000 28.50000 8.05000 11.99998 9.49999 0.00000 40.50000 39.99997 25.49999 8.12500 9.00000 8.00000 0.00000 39.50000 30.50000 27.00000 8.20000 11.99999 9.49999 0.00000 35.00002 35.99995 30.99999 8.27500 12.00002 10.50001 0.00000 36.49995 39.50006 29.50003 8.35000 8.49998 7.99998 0.00000 36.99996 35.50002 28.50002 8.42500 9.00001 10.00002 0.00000 37.50002 35.49999 30.00000 8.50000 11.00000 13.50000 0.00000 35.50000 35.50000 27.50000 8.57500 10.00001 10.00002 0.00000 28.50000 34.50001 23.00001 8.65000 7.50002 5.00002 0.00000 28.99999 36.99995 21.99999 8.72500 4.49998 4.00001 0.00000 40.00010 38.99997 28.50006 8.80000 6.50002 6.50001 0.00000 44.49997 35.50000 26.99996 8.87500 9.50000 8.50000 0.00000 39.00000 33.00000 23.00000 8.95000 6.00002 7.00001 0.00000 33.50003 35.49998 26.50000 9.02500 5.49997 5.00000 0.00000 29.99998 38.00002 28.99998 9.10000 6.99999 4.49999 0.00000 37.50006 39.00003 27.99997 9.17500 6.00000 5.00001 0.00000 40.99999 39.49999 25.50000 9.25000 5.00000 4.50000 0.00000 40.50000 39.50000 23.00000 9.32500 4.99999 3.99999 0.00000 40.00001 36.50003 23.99998 9.40000 4.50002 4.50001 0.00000 37.50001 29.50002 25.50003 9.47500 2.49999 4.00000 0.00000 34.99998 30.50003 25.00002 9.55000 5.00002 2.99999 0.00000 33.00000 36.50002 24.99999 9.62500 5.50000 2.50000 0.00000 31.50000 37.00000 24.00000 9.70000 3.50000 4.49999 0.00000 32.49999 36.49999 25.00000 9.77500 4.99999 6.00000 0.00000 34.50001 33.50006 22.50003 9.85000 4.99999 4.99999 0.00000 35.50002 32.00004 20.50001 9.92500 4.00000 2.99999 0.00000 38.00001 34.99999 25.50002 $$ ctruncate: Normal termination Times: User: 0.8s System: 0.0s Elapsed: 0:00